skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, Sang-Youl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Precise control of gene expression is critical for optimizing cellular metabolism and improving the production of valuable biochemicals. However, hard-wired approaches to pathway engineering, such as optimizing promoters, can take time and effort. Moreover, limited tools exist for controlling gene regulation in non-conventional hosts. Here, we develop a two-channel chemically-regulated gene expression system for the multi-stress tolerant yeast Kluyveromyces marxianus and use it to tune ethyl acetate production, a native metabolite produced at high titers in this yeast. To achieve this, we repurposed the plant hormone sensing modules (PYR1ABA/HAB1 and PYR1*MANDI/HAB1*) for high dynamic-range gene activation and repression controlled by either abscisic acid (ABA) or mandipropamid (mandi). To redirect metabolic flux towards ethyl acetate biosynthesis, we simultaneously repress pyruvate dehydrogenase (PDA1) and activate pyruvate decarboxylase (PDC1) to enhance ethyl acetate titers. Thus, we have developed new tools for chemically tuning gene expression in K. marxianus and S. cerevisiae that should be deployable across many non-conventional eukaryotic hosts. 
    more » « less
  2. Abstract Plants sense abscisic acid (ABA) using chemical-induced dimerization (CID) modules, including the receptor PYR1 and HAB1, a phosphatase inhibited by ligand-activated PYR1. This system is unique because of the relative ease with which ligand recognition can be reprogrammed. To expand the PYR1 system, we designed an orthogonal ‘*’ module, which harbors a dimer interface salt bridge; X-ray crystallographic, biochemical and in vivo analyses confirm its orthogonality. We used this module to create PYR1*MANDI/HAB1* and PYR1*AZIN/HAB1*, which possess nanomolar sensitivities to their activating ligands mandipropamid and azinphos-ethyl. Experiments inArabidopsis thalianaandSaccharomyces cerevisiaedemonstrate the sensitive detection of banned organophosphate contaminants using living biosensors and the construction of multi-input/output genetic circuits. Our new modules enable ligand-programmable multi-channel CID systems for plant and eukaryotic synthetic biology that can empower new plant-based and microbe-based sensing modalities. 
    more » « less
  3. Significance Abscisic acid (ABA) is a phytohormone that plants utilize to coordinate responses to abiotic stress, modulate seed dormancy, and is central to plant development in several contexts. Chemicals that activate or block ABA signaling are useful as research tools and as potential agrochemical leads. Many successes have been reported for ABA activators (agonists), but existing ABA blockers (antagonists) are limited by modest in vivo activity. Here we report antabactin (ANT), a potent ABA blocker developed using “click chemistry”–based diversification of a known ABA activator. Structural studies reveal, ANT disrupts signaling by stabilizing ABA receptors in an unproductive form. ANT can accelerate seed germination in multiple species, making it a chemical tool for improving germination. 
    more » « less
  4. Abstract A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense–response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense–response applications. 
    more » « less
  5. null (Ed.)
    Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of PP2C transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs. It has been demonstrated that ABA induces the degradation of existing ABI1 and PP2CA through the PUB12/13 and RGLG1/5 E3 ligases, respectively. However, other unidentified E3 ligases are predicted to regulate protein stability of clade A PP2Cs as well. In this work, we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the multimeric cullin3 (CUL3)-RING-based E3 ligases (CRL3s), as PP2CA-interacting proteins. BPM3 and BPM5 interact in the nucleus with PP2CA as well as with ABI1, ABI2, and HAB1. BPM3 and BPM5 accelerate the turnover of PP2Cs in an ABA-dependent manner and their overexpression leads to enhanced ABA sensitivity, whereas bpm3 bpm5 plants show increased accumulation of PP2CA, ABI1 and HAB1, which leads to global diminished ABA sensitivity. Using biochemical and genetic assays, we demonstrated that ubiquitination of PP2CA depends on BPM function. Given the formation of receptor-ABA-phosphatase ternary complexes is markedly affected by the abundance of protein components and ABA concentration, we reveal that BPMs and multimeric CRL3 E3 ligases are important modulators of PP2C coreceptor levels to regulate early ABA signaling as well as the later desensitizing-resetting steps. 
    more » « less
  6. Drought causes crop losses worldwide, and its impact is expected to increase as the world warms. This has motivated the development of small-molecule tools for mitigating the effects of drought on agriculture. We show here that current leads are limited by poor bioactivity in wheat, a widely grown staple crop, and in tomato. To address this limitation, we combined virtual screening, x-ray crystallography, and structure-guided design to develop opabactin (OP), an abscisic acid (ABA) mimic with up to an approximately sevenfold increase in receptor affinity relative to ABA and up to 10-fold greater activity in vivo. Studies inArabidopsis thalianareveal a role of the type III receptorPYRABACTIN RESISTANCE-LIKE 2for the antitranspirant efficacy of OP. Thus, virtual screening and structure-guided optimization yielded newly discovered agonists for manipulating crop abiotic stress tolerance and water use. 
    more » « less
  7. Summary Abscisic acid (ABA) receptors belong to theSTARTdomain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life.STARTdomain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterizedSTARTdomain proteins are the 14PYR/PYL/RCAR ABAreceptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently inNicotiana benthamianacoupled to untargetedLC‐MSto identify candidate binding ligands. We optimized this method usingABA–PYLinteractions and show thatABAco‐purifies with wild‐typePYL5 but not a binding site mutant. TheKdofPYL5 forABAis 1.1 μm, which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37STARTdomain‐related proteins, which resulted in the identification of ligands that co‐purified withMLBP1 (At4G01883) orMLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed thatMLBP1 binds to monolinolenin, which we confirmed using recombinantMLBP1. Monolinolenin also co‐purified withMLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants. 
    more » « less